A review of flame retardant polypropylene fibres

نویسندگان

  • Sheng Zhang
  • A. Richard Horrocks
چکیده

Flame retardants for polypropylene (PP) and their potential suitability for use in fibre applications are reviewed. Five principal types of generic flame retardant systems for inclusion in polypropylene fibres have been identified as phosphoruscontaining, halogen-containing, silicon-containing, metal hydrate and oxide and the more recently developed nanocomposite flame retardant formulations. The most effective to date comprise halogen–antimony and phosphorus–bromine combinations, which while having limited performance also are falling environmental pressures. Alternatives are discussed as well as means of enhancing the effectiveness and hence usefulness of phosphorus–nitrogen formulations normally used at concentrations too high for fibre inclusion. Of special interest is the potential for inclusion of functionalised nanoclays and recent observations that certain hindered amine stabilisers are effective at concentrations of 1% or so. q 2003 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Key Role of Reinforcing Structures in the Flame Retardant Performance of Self-Reinforced Polypropylene Composites

The flame retardant synergism between highly stretched polymer fibres and intumescent flame retardant systems was investigated in self-reinforced polypropylene composites. It was found that the structure of reinforcement, such as degree of molecular orientation, fibre alignment and weave type, has a particular effect on the fire performance of the intumescent system. As little as 7.2 wt % addit...

متن کامل

Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH-oxidized carbon nanotube (AMO-LDH-OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this end...

متن کامل

Combustion characteristics of cellulosic loose fibres

The aim of this paper is to study the combustion characteristics of loose fibrous cellulosic compounds through cone calorimeter measurements. The challenge in studying loose fibrous materials by cone calorimeter in a reproducible manner is met by optimizing various process parameters such as sample weight, heat flux and grid type. The method is validated using cotton fibres and fabrics with a r...

متن کامل

Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As c...

متن کامل

The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003